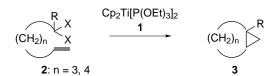


Titanocene(II)-promoted reaction of *gem*-dihalides possessing a terminal double bond. New intramolecular cyclopropanation

Tooru Fujiwara, Miho Odaira and Takeshi Takeda*

Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan Received 21 February 2001; accepted 16 March 2001

Abstract—The $Cp_2Ti[P(OEt)_3]_2$ **1**-promoted intramolecular reaction of *gem*-dihalides possessing a terminal double bond is described. The treatment of 6,6- and 7,7-dihalo-1-alkenes with **1** produced bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane derivatives, respectively. © 2001 Elsevier Science Ltd. All rights reserved.


Recently we found that the treatment of diphenyl thioacetals having a terminal carbon-carbon double bond with Cp₂Ti[P(OEt)₃]₂ 1 gave cycloalkenes via the ring-closing metathesis of the initially formed titaniumcarbene complexes.1 This new reaction is useful for the synthesis of a variety of nitrogen² and oxygen³ heterocycles. We also investigated the formation of the carbene complex-like organotitanium species by the reduction of gem-dihalides with 1 and found that these species are useful for the transformation of carbonyl compounds into highly substituted olefins.⁴ These results prompted us to investigate the reaction of gemdihalides carrying a terminal double bond 2 with the low-valent titanium 1. We found that, unlike the reaction of the thioacetals, bicyclo[3.1.0]hexane and bicyclo[4.1.0]heptane derivatives 3 were produced by the treatment of the corresponding gem-dihalides 2 with 1 (Scheme 1).

The starting materials **2** were easily prepared from the corresponding unsaturated carbonyl compounds by the method recently developed by us. First, the reaction of 6,6-dihalo-1-hexene derivatives was studied. When the *gem*-dichloride **2a** was treated with the low-valent titanium species **1** (3 equiv.) at 0°C for 1.5 h, the bicyclic cyclopropane **3a** was produced in 73% yield (entry 1, Table 1). Similarly, the reactions of several 6,6-dihalo-1-alkenes **2b**-**e** were performed and the cyclopropanes **3** were obtained in good yields (entries 2–5). The isolation of **3** by silica gel chromatography was sometimes

Keywords: cyclopropanation; dehalogenation; halogens and compounds; titanium and compounds.

difficult owing to the contamination with trace amounts of olefinic byproducts. In such cases, the crude mixture was treated with hydrogen peroxide in acetic acid or *m*-chloroperbenzoic acid (MCPBA) before the isolation.

The following is a typical experimental procedure. To a THF (6.7 ml) solution of the titanocene(II) reagent 1, prepared from titanocene dichloride (374 mg, 1.5 mmol), magnesium turnings (36 mg, 1.5 mmol), triethyl phosphite (0.52 ml, 3 mmol) and finely powdered molecular sieves 4 Å (150 mg), 3b was added a THF (10 ml) solution of 6,6-dibromo-4-phenyl-1-heptene (2d) (166 mg, 0.5 mmol) at 0°C under argon. After being stirred for 1.5 h, the reaction was quenched by addition of 1 M NaOH (30 ml). The insoluble materials were filtered off through Celite and washed with ether (10 ml). The layers were separated, and the aqueous layer was extracted with ether (2×20 ml). The combined organic extracts were dried over Na₂SO₄. After removal of the solvent at atmospheric pressure, the residue was dissolved in AcOH (3 ml) and H₂O₂ (30%, 0.8 ml) was added to the solution with cooling (ca. 20°C). The reaction mixture was stirred for 6 h and diluted with water (20 ml). The organic materials were extracted with ether (2×20 ml) and dried (Na₂SO₄). The solvent was removed under atmospheric pressure, and the

Scheme 1.

^{*} Corresponding author. Tel.: +81 42 388 7034; fax: +81 42 388 7034; e-mail: takeda-t@cc.tuat.ac.jp

Table 1. Reaction of gem-dihalides 2 with titanocene(II) 1

Entry	gem-Dihalide 2	Ten	np/°C (Time/h)	Products (Yield / %;	Ratio of isomers)
1	Ph	2a	0 (1.5)	Ph	3a (73 ^a ; 89 : 11)
2	Ph Br	2 b	0 (1)	3a (73 ^b ; 89 : 11)	
3	Ph Br Br	2c	0 (1)	Ph	3b (70°; 97 : 3)
4	Br Ph	2d	0 (1.5)	Ph	3c (72 ^c ; 96 : 4)
5	Ph Cl Cl	2e	0 (1.5)	Ph	3d (77°)
6	Ph Cl	2f	rt (15)	Ph 3e (20; 57 : 43)	Ph 4a (40)
7	Ph Br Br	2g	rt (overnight)	Ph	3f (68°; 63 : 37)
8	Br Br Ph	2h	0 (2)	Ph	3g (68; 61 : 39)
9	Cl	2i	rt (2) then reflux (1)	Ph	4b (37 ^d)

^aContaminated with 3-methyl-5-(3-phenylpropyl)-1-cyclopentene. The yield was corrected for the contaminant. ^bThe cyclopropane **3** was isolated after treatment of the crude mixture with MCPBA in dichloromethane. ^cThe cyclopropane **3** was isolated after treatment of the crude mixture with hydrogen peroxide in acetic acid. ^dContaminated with 3-benzyl-1,7-octadiene. The yield was corrected for the contaminant.

residue was purified by PTLC (hexane) to yield 63 mg (72%) of 1-methyl-3-phenylbicyclo[3.1.0]hexane (3c).

The mode of the reaction of 7,7-dihalo-1-heptene derivatives was largely dependent on the substituent at the carbon α to the halogen. Similarly to 6,6-dihalo-1-alkenes, the treatment of the dihalides bearing a substituent at 7-C position 2g and h with the titanocene(II) species 1 selectively produced the cyclopropanes 3 in good yields (entries 7 and 8). Although the reaction of the *gem*-dichloride 2f having no substituent at the 7-C position gave the cyclopropane 3e, the major product was the cyclohexene 4a. Further, we found that the

cycloalkene **4b** was obtained, and the corresponding cyclopropane was not produced by the reaction of 8,8-dichloro-1-octene derivative **2i** at an elevated temperature (entry 9).⁶

In connection with the mechanism of the Ziegler-Natta polymerization, intramolecular insertion of a terminal olefin into the titanium-carbon bond has been investigated. Alkenyltitanocene chlorides prepared by treating titanocene dichloride with the appropriate Grignard reagents cyclize to the corresponding (cycloalkylmethyl)titanocene chloride on treatment with ethylaluminum dichloride.⁷ This process is also promoted by

Scheme 2.

Scheme 3.

magnesium bromide or methylaluminoxane.8 Although more study will be required before reliable reaction intermediates can be proposed, we tentatively assume that the present reaction proceeds via a similar olefin insertion process. We found that 1-chloro-2-methyl-4-(3-phenylpropyl)cyclopentane 5 was produced in 29% yield along with the cyclopropane 3a and a substantial amount of the starting materials was recovered (41%) when the reaction of 2a was performed using 1.5 equiv. of the low-valent titanium reagent 1 (Scheme 2). Therefore, the first step of the cyclopropane formation would be the cyclization of the α -halo alkyltitanium 6 to form the cyclic γ -halo alkyltitanium species 7. The intramolecular reductive coupling of 7 with an additional equivalent of 1 affords the cyclopropane 3 (Scheme 3). If the titanium compound 6 is reduced with 1 prior to the cyclization, the ring-closing metathesis of the resulting carbene complex 8 proceeds via the formation of titanacyclobutane intermediate 9 to afford the cycloalkene 4.

Synthesis of bicyclic cyclopropanes by intramolecular cyclopropanation has been extensively studied. The most widely employed method is the transition metalcatalyzed reaction of alkenyl diazo carbonyl compounds. 9 Certain transition metal-carbene complexes are also used for this transformation. 10 Titanium(II) species-promoted intramolecular reaction of ω-vinyl carboxylic esters under catalytic or stoichiometric conditions has been utilized for the preparation of bicyclic cyclopropanols.¹¹ Recently, Cohen et al. reported the synthesis of bicyclo[3.1.0] and [4.1.0] systems bearing an angular vinyl substituent by the tandem lithium-ene cyclization and thiophenoxide expulsion.¹² Since the alkenyl gem-dihalides are readily available from the corresponding unsaturated ketones or aldehydes, the present reaction provides a useful synthetic route to fused 5,3- and 6,3-systems.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science, Sports, and Culture, Japan (No. 11440213).

References

- 1. Fujiwara, T.; Takeda, T. Synlett 1999, 354-356.
- Fujiwara, T.; Kato, Y.; Takeda, T. Heterocycles 2000, 52, 147–150.
- (a) Takeda, T.; Rahim, M. A.; Takamori, M.; Yanai, K.; Fujiwara, T. *Polyhedron* 2000, 19, 593–596; (b) Fujiwara, T.; Kato, Y.; Takeda, T. *Tetrahedron* 2000, 56, 4859–4869; (c) Fujiwara, T.; Yanai, K.; Shimane, K.; Takamori, M.; Takeda, T. *Eur. J. Org. Chem.* 2001, 155–161.
- (a) Takeda, T.; Sasaki, R.; Fujiwara, T. J. Org. Chem.
 1998, 63, 7286–7288; (b) Takeda, T.; Endo, Y.; Reddy, A.
 C. S.; Sasaki, R.; Fujiwara, T. Tetrahedron 1999, 55, 2475–2486.
- (a) Takeda, T.; Sasaki, R.; Nakamura, A.; Yamauchi, S.; Fujiwara, T. Synlett 1996, 273–274; (b) Takeda, T.; Sasaki, R.; Yamauchi, S.; Fujiwara, T. Tetrahedron 1997, 53, 557–566.
- 6. The cyclopropane **3** was not produced by the reaction of 8,8-dichloro-1-octene derivative possessing a substituent at the 8-C position either. A mixture of 1-methylene-2-methyl-4-(3-phenylpropyl)cycloheptane and 2-methylene-1-methyl-4-(3-phenylpropyl)cycloheptane was produced in ca. 50% total yield by the treatment of 8,8-dibromo-6-(3-phenylpropyl)-1-nonene with 4 equiv. of the titanium reagent **1** at room temperature for 19 h.
- (a) Clawson, L.; Soto, J.; Buchwald, S. L.; Steigerward,
 M. L.; Grubbs, R. H. J. Am. Chem. Soc. 1985, 107,
 3377–3378; (b) Rigollier, P.; Young, J. R.; Fowley, L. A.;

- Stille, J. R. J. Am. Chem. Soc. **1990**, 112, 9441–9442; (c) Young, J. R.; Stille, J. R. Organometallics **1990**, 9, 3022–3025; (d) Young, J. R.; Stille, J. R. J. Am. Chem. Soc. **1992**, 114, 4936–4937.
- 8. Barta, N. S.; Kirk, B. A.; Stille, J. R. J. Am. Chem. Soc. 1994, 116, 8912–8919.
- 9. Davies, H. M. L. In *Comprehensive Organic Synthesis*; Trost, B. M.; Fleming, I., Eds.; Pergamon: Oxford, 1991; Vol. 4, pp. 1031–1067.
- (a) Casey, C. P.; Shusterman, A. J.; Vollendorf, N. W.; Haller, K. J. J. Am. Chem. Soc. 1982, 104, 2417–2423; (b) Casey, C. P.; Cesa, M. C. Organometallics 1982, 1, 87–94; (c) Casey, C. P.; Vollendorf, N. W.; Haller, K. J. J. Am. Chem. Soc. 1984, 106, 3754–3764; (d) Toledano, C. A.; Rudler, H.; Daran, J.-C.; Jeannin, Y. J. Chem. Soc., Chem. Commun. 1984, 574–576; (e) Casey, C. P.; Shuster-
- man, A. J. Organometallics 1985, 4, 736–744; (f) Iyer, R. S.; Kuo, G.-H.; Helquist, P. J. Org. Chem. 1985, 50, 5898–5900; (g) Alvarez, C.; Parlier, A.; Rudler, H.; Yefsah, R.; Daran, J. C.; Knobler, C. Organometallics 1989, 8, 2253–2259; (h) Harvey, D. F.; Brown, M. F. J. Org. Chem. 1992, 57, 5559–5561; (i) Watanuki, S.; Mori, M. Organometallics 1995, 14, 5054–5061; (j) Harvey, D. F.; Sigano, D. M. J. Org. Chem. 1996, 61, 2268–2272; (k) Casey, C. P.; Craft, S.; Powell, D. R. J. Am. Chem. Soc. 2000, 122, 3771–3772.
- (a) Lee, J.; Kang, C. H.; Kim, H.; Cha, J. K. J. Am. Chem. Soc. 1996, 118, 291–292; (b) Kasatkin, A.; Kobayashi, K.; Okamoto, S.; Sato, F. Tetrahedron Lett. 1996, 37, 1849–1852.
- Cheng, D.; Knox, K. R.; Cohen, T. J. Am. Chem. Soc. 2000, 122, 412–413.